
N-Body Simulation on an Altera DE2-115 FPGA
Enrique Gomez (exg), Maxwell Guo (mwguo)
https://mwguo15.github.io/n-body-on-fpga/

Milestone Report

Summary

During this week, we have completed the naive n-body simulation in SystemVerilog. It performs
floating-point computations through the use of IP cores, allowing it to be as precise as possible.
We created a naive C++ n-body simulation and a few python scripts to verify our simulation’s
output on a set of random bodies. Though we need to perform more testing, our synthesized
program can fit at least 256 bodies, which exceeds our goals for this week.

As for synthesizing onto the FPGA, we have successfully done so, but have scrapped the idea of
sending results from the FPGA to our devices for verification. There are too many things that can
go wrong and we would like to focus more on performance. Additionally, we have met the
timing requirements for using the DE2-115’s 50MHz clock.

Goals

We have exceeded our expectations for this week. Originally, we were willing to accept
imprecise results for performance, but we have achieved decent performance with maximal
precision. We have mostly figured out the simulation and synthesis workflow to the point where
we are confident moving forward. Specifically, we know exactly how to produce precise results
via IP cores, verify our outputs, synthesize our code onto the FPGA, use hardware memory
controllers, and track performance.

Thus, we believe we can still hit our planned goals and produce our planned deliverables. In our
opinion, we have gotten through the hardest part of the project and can comfortably move
forward with the systolic array approach. We planned to implement the systolic array approach
over these final two weeks, but we believe it is possible to get a working implementation over
the next week. Afterwards, we will have time for further optimizations and data collection.

Here are our goals, which are mostly the same as before:

● Core Deliverables (Plan to Achieve): Correct, working FPGA implementation of an
optimized n-body simulation. This would involve designing the full systolic array
architecture that pipelines all n2 pairwise computations. This implementation would
require N memory accesses per pass over ceil(N/K) passes, where K is the number of

https://mwguo15.github.io/n-body-on-fpga/

processing elements (PEs) in the systolic array. Each PE will compute force contributions
for one body. This minimizes the amount of memory accesses and utilizes the DSP
blocks better. We hope to compare performance metrics (resource utilization, energy
efficiency, speed) with the naive implementation. We also hope to compare speed with a
CPU Barnes-Hut approach and GPU approach. Ideally, we want to have a noticeable
speedup over our naive approach. All of these comparisons will be represented with
benchmarks, graphs, and a trade-off report.

● Stretch Goals (Hope to Achieve): In addition to the core deliverables, we would like to
attempt scaling the design to handle 10,000+ bodies by further optimizing the systolic
array (deeper pipelines) and/or by compressing the data. We would also like to
experiment more with the number of PEs and precision (such as reducing the number of
iterations our square root module takes). Lastly, we would like to compare the
performance to power (perf/watt) ratios for the FPGA and CPU implementations.

Schedule

April 16 – 19

1. Systolic Array Architecture Planning (mwguo + egomez)
○ Finalize the block diagram for the systolic array. Determine how many processing

elements (PEs) we can reasonably instantiate within the FPGA’s LUT and DSP
block budget.

○ Map out the data flow: how bodies are streamed into the array, how partial sums
of force are passed along, and how the pipeline handles any arithmetic latency
(especially square root).

2. Position/Velocity/Acceleration Calculator Updates (mwguo)
○ Extend the naive calculator modules into a form compatible with systolic

processing.
○ Insert additional pipeline stages into the floating-point operations (add, mul, div)

to allow new operations to issue every clock and mask latencies.
3. Central FSM for Systolic Array (egomez)

○ Write a top-level finite state machine (FSM) that manages data loading,
coordinate broadcasting, and result accumulation from all PEs.

○ Verify that each PE receives the correct body data and that the aggregated forces
can update body positions.

4. Integration & Debugging (mwguo + egomez)
○ Combine the updated calculators with the FSM into a fully functional systolic

array design.
○ Use a small test set of bodies in simulation to ensure correctness before synthesis.

April 20 – 23

1. Arithmetic Optimization (mwguo)
○ Refine the floating-point pipelines (especially the square root unit) to reduce cycle

counts.
○ Experiment with fewer Newton-Raphson iterations for sqrt, or consider new

initial guesses to minimize error without large performance hits.

2. Systolic Array Tuning (egomez)
○ Profile how many bodies per pass we can handle versus resource utilization.
○ Adjust the number of PEs (K) to strike a balance between concurrency and timing

closure at 50 MHz.
○ Possibly pipeline the array further if we can’t meet timing at a higher

concurrency.

3. Integration Tests & Partial Benchmarks (mwguo + egomez)
○ Run partial benchmarks on the FPGA using small to moderate N values.
○ Compare against the naive design’s performance.
○ Verify that resource usage remains within our device limits.

April 24 – 28

1. Advanced Optimizations (mwguo + egomez)
○ Explore deeper pipelining strategies, data compression, or approximate arithmetic

(like reduced mantissa) if needed.
○ Investigate whether unrolling outer loops or reorganizing memory layouts can

reduce stall cycles.

2. Data Collection & Graph Generation (mwguo, egomez)
○ Gather detailed throughput and cycle counts for various N.
○ Compare the improved systolic array design against the CPU baseline and naive

FPGA design.
○ Plot performance vs. resource utilization, exploring multiple PE configurations.

3. Final Report Preparation (mwguo + egomez)

○ Summarize the pipeline design trade-offs, accuracy vs. performance findings, and
resource usage.

○ Compile results into clear charts showing speedup (or slowdown) relative to the
CPU, power/watt analysis, etc.

Poster Session
For the poster session, we plan to show performance graphs comparing the CPU and naive +
fully optimized FPGA implementations (including any implementations between naive and fully
optimized). We would also like to do a performance/watt analysis because our FPGA
implementation will likely be slower, but much more power efficient. There will not be a demo
because there is not much to demo, besides the verification on our FPGA.

Results
For our naive N-Body simulations, we have been using a CPU C++ implementation to validate
our results produced by our Altera DE2-115 Cyclone IV FPGA. Our CPU of choice was the Intel
i7-12700–found in the ECE machines–which has a 4.9 GHz max clock frequency and 12 cores (8
performance cores and 4 efficiency cores). Our FPGA has a 50 MHz clock frequency, ~140,000
LUTs (Look Up Tables), and 432 M9Ks (which is BRAM memory–a type of SRAM–which we
used to read our bodies’ data and write our updated body data).

Our current CPU implementation is a single-threaded implementation, which we plan on
optimizing to a Barnes Hut multithreaded OpenMP implementation, for future comparison
against our systolic arrays and grid-based-approximation FPGA optimization. Since both

implementations run in time, we have limited our input body size to small . This has 𝑂(𝑁2) 𝑁
also allowed us to perform a significant amount of manual testing to gain confidence in the
correctness of both our C++ and SystemVerilog program outputs and our validation Python
scripts.

Our scripts generate the data necessary for our bodies (i.e. 32-bit single-precision floating-point
2D position, 2D velocity, and mass), and write it into 160-bit words in a MIF (Memory
Initialization File). During synthesis, this data is written into our FPGA’s BRAM, and our
bodies’ data is updated in-place. We then use our FPGA’s seven-segment segment displays to
display the number of computation clock cycles, the data for the first few bodies in memory, or
the sum of all the accelerations at the final time step on all bodies due to gravitational forces. The
latter, while not the most rigorous method of testing, should be equal to the same sum computed
during simulation or with the C++ implementation. However, we performed very rigorous testing
for during simulation, ensuring that the positions/velocities/accelerations and 𝑁 ∈ 2, 20[] (𝑥, 𝑦)
masses matched exactly between the C++ and SystemVerilog implementations.

Ensuring that we had these validation methods was critical to proceed with our optimized
hardware designs. Additionally, we have recorded some results to have a benchmark for our
more parallel design iterations.

Figure 1: Wall-clock Computation Time for N-Body Simulation on FPGA vs CPU for
 𝑁 ∈ {25, 50, 100, 200}

 N = 25 N = 50 N = 100 N = 200

Intel i7-12700
CPU (4.9 GHz
Max Clock)

0.000081 sec 0.000214 sec 0.000401 sec 0.000946 sec

DE2-115
Cyclone IV
FPGA (50 MHz)

1.377545 sec 5.530045 sec 22.160045 sec 88.720045 sec

As shown above, our FPGA design is thousands of times slower than the CPU version. This is
expected. Firstly, our FPGA’s maximum clock rate (50 MHz) is roughly 100 times slower than
the CPU’s (4.9 GHz). Additionally, our hardware’s datapath is currently an “acceleration
calculator,” rather than a fully optimized parallel datapath with systolic arrays. Our hardware
also executes arithmetic instructions exactly as specified in the SystemVerilog description,
whereas the Intel CPU supports out-of-order execution to overlap computations and hide
memory latencies. Finally, the CPU has a lot more advanced arithmetic units. This is especially
important to note because we are performing lots of floating point multiplication/division/square
root operations. Since we did not have access to a floating-point square root IP core for our
FPGA, we had to create our own square root approximation module using the Newton-Raphson
approximation method. This approximation first makes an initial guess based on the input value,
and then performs 2-3 iterations to find a value closest to the true square root. While we found
that this approximation was highly accurate, it takes ~150 clock cycles due to the shifting and
floating point additions/multiplications/divisions involved, whereas a modern CPU like the i7 we
used would take around 20 clock cycles. This also applies to the rest of the floating-point
arithmetic instructions. While a floating-point addition could take between 1-3 clock cycles on a
CPU, it takes around 4 cycles on our FPGA using the FP IP cores provided by our Quartus
synthesization software.

While the CPU significantly outperforms our design, we are left with lots of interesting design
choices. Firstly, our synthesized design only uses less than 1% of the LUTs on our FPGA. This
means that we still have a lot of remaining resources to design a highly parallel datapath, and we
could synthesize several more floating point units to hide our force calculations’ arithmetic
latency. Additionally, since our design sacrifices little precision, we could consider how to
redesign our square-root approximation module. Reducing our number of iterations for square
root convergence could save us a significant amount of computation clock cycles (finding a
middle-ground is important, since we don’t want to entirely sacrifice correctness of course). The
differences in our design’s output vs. the CPU’s output could amortize over larger timesteps.

Finally, now that we know which components in our design are the bottlenecks, we know what
computation to overlap early on in our systolic arrays approach.

Memory accesses are currently not a concern for us. While we could scale our body-input size to
very large and observe how our optimized design’s computation time scales, this would likely 𝑁
involve using SDRAM memory. However, this would largely complicate certain design choices
and would leave us less time to optimize the systolic arrays approach. Therefore, we will stick to
using M9K BRAM, and set a target input size of 10,000-20,000 bodies for our final design to
compare against the CPU.

Concerns

A key concern lies in the latency of floating-point arithmetic on the FPGA, particularly the
square-root approximation module, which currently requires around 150 clock cycles per
operation. Other floating-point operations (multiplication, division, and addition) also take
significantly longer on the FPGA than on a modern CPU. To address this, we plan to pipeline
these operations more aggressively and experiment with fewer iterations in the Newton-Raphson
method for square root. Our goal is to reduce cycle counts while maintaining acceptable
numerical accuracy.

We are also attentive to the trade-off between resource utilization and parallelism. While our
naive design currently uses less than one percent of the LUTs, a fully expanded systolic array
could place heavier demands on FPGA resources. We intend to add processing elements (PEs)
incrementally, carefully monitoring resource usage, and only insert additional pipelining where it
meaningfully improves performance.

Memory bandwidth and scalability are another concern—particularly for larger N
values—because multiple PEs accessing memory in parallel can saturate on-chip resources. We
plan to stay within the bounds of the on-chip BRAM for a target of roughly 10,000 to 20,000
bodies. Should bandwidth constraints surface, we will adjust the level of concurrency or
investigate simple burst-based SDRAM approaches without overcomplicating our design.

Additionally, while our C++ and Python scripts have already proven effective for validation, we
recognize the need for more robust corner-case testing as we move to more advanced designs.
We will maintain thorough simulation testbenches and compare outputs (positions, velocities,
and partial sums of forces) to our CPU implementation over multiple time steps to ensure
correctness before performing final synthesis.

Lastly, we are aware of the tight timeline. Implementing and optimizing the systolic array,
followed by extensive data collection and reporting, must be completed in only a few weeks. Our
approach is to focus on a minimal but functional systolic design first, then apply further

optimization, deeper pipelining, and approximate arithmetic techniques if time permits. This
strategy will help us manage complexity while still delivering meaningful performance and
energy-efficiency results.

	N-Body Simulation on an Altera DE2-115 FPGA
	
	Summary
	
	Goals
	We have exceeded our expectations for this week. Originally, we were willing to accept imprecise results for performance, but we have achieved decent performance with maximal precision. We have mostly figured out the simulation and synthesis workflow to the point where we are confident moving forward. Specifically, we know exactly how to produce precise results via IP cores, verify our outputs, synthesize our code onto the FPGA, use hardware memory controllers, and track performance.
	Schedule
	Poster Session
	For the poster session, we plan to show performance graphs comparing the CPU and naive + fully optimized FPGA implementations (including any implementations between naive and fully optimized). We would also like to do a performance/watt analysis because our FPGA implementation will likely be slower, but much more power efficient. There will not be a demo because there is not much to demo, besides the verification on our FPGA.
	Results
	
	Concerns

