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Milestone Report 
 
Summary 
 
During this week, we have completed the naive n-body simulation in SystemVerilog. It performs 
floating-point computations through the use of IP cores, allowing it to be as precise as possible. 
We created a naive C++ n-body simulation and a few python scripts to verify our simulation’s 
output on a set of random bodies. Though we need to perform more testing, our synthesized 
program can fit at least 256 bodies, which exceeds our goals for this week.  
 
As for synthesizing onto the FPGA, we have successfully done so, but have scrapped the idea of 
sending results from the FPGA to our devices for verification. There are too many things that can 
go wrong and we would like to focus more on performance. Additionally, we have met the 
timing requirements for using the DE2-115’s 50MHz clock. 
 
Goals 
 
We have exceeded our expectations for this week. Originally, we were willing to accept 
imprecise results for performance, but we have achieved decent performance with maximal 
precision. We have mostly figured out the simulation and synthesis workflow to the point where 
we are confident moving forward. Specifically, we know exactly how to produce precise results 
via IP cores, verify our outputs, synthesize our code onto the FPGA, use hardware memory 
controllers, and track performance.  
 
Thus, we believe we can still hit our planned goals and produce our planned deliverables. In our 
opinion, we have gotten through the hardest part of the project and can comfortably move 
forward with the systolic array approach. We planned to implement the systolic array approach 
over these final two weeks, but we believe it is possible to get a working implementation over 
the next week. Afterwards, we will have time for further optimizations and data collection. 
 
Here are our goals, which are mostly the same as before: 

● Core Deliverables (Plan to Achieve): Correct, working FPGA implementation of an 
optimized n-body simulation. This would involve designing the full systolic array 
architecture that pipelines all n2 pairwise computations. This implementation would 
require N memory accesses per pass over ceil(N/K) passes, where K is the number of 
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processing elements (PEs) in the systolic array. Each PE will compute force contributions 
for one body. This minimizes the amount of memory accesses and utilizes the DSP 
blocks better. We hope to compare performance metrics (resource utilization, energy 
efficiency, speed) with the naive implementation. We also hope to compare speed with a 
CPU Barnes-Hut approach and GPU approach. Ideally, we want to have a noticeable 
speedup over our naive approach. All of these comparisons will be represented with 
benchmarks, graphs, and a trade-off report. 

● Stretch Goals (Hope to Achieve): In addition to the core deliverables, we would like to 
attempt scaling the design to handle 10,000+ bodies by further optimizing the systolic 
array (deeper pipelines) and/or by compressing the data. We would also like to 
experiment more with the number of PEs and precision (such as reducing the number of 
iterations our square root module takes). Lastly, we would like to compare the 
performance to power (perf/watt) ratios for the FPGA and CPU implementations. 

 
Schedule 

April 16 – 19 

1. Systolic Array Architecture Planning (mwguo + egomez) 
○ Finalize the block diagram for the systolic array. Determine how many processing 

elements (PEs) we can reasonably instantiate within the FPGA’s LUT and DSP 
block budget. 

○ Map out the data flow: how bodies are streamed into the array, how partial sums 
of force are passed along, and how the pipeline handles any arithmetic latency 
(especially square root). 

2. Position/Velocity/Acceleration Calculator Updates (mwguo) 
○ Extend the naive calculator modules into a form compatible with systolic 

processing. 
○ Insert additional pipeline stages into the floating-point operations (add, mul, div) 

to allow new operations to issue every clock and mask latencies. 
3. Central FSM for Systolic Array (egomez) 

○ Write a top-level finite state machine (FSM) that manages data loading, 
coordinate broadcasting, and result accumulation from all PEs. 

○ Verify that each PE receives the correct body data and that the aggregated forces 
can update body positions. 
 

4. Integration & Debugging (mwguo + egomez) 
○ Combine the updated calculators with the FSM into a fully functional systolic 

array design. 
○ Use a small test set of bodies in simulation to ensure correctness before synthesis. 

 



April 20 – 23 

1. Arithmetic Optimization (mwguo) 
○ Refine the floating-point pipelines (especially the square root unit) to reduce cycle 

counts. 
○ Experiment with fewer Newton-Raphson iterations for sqrt, or consider new 

initial guesses to minimize error without large performance hits. 
 

2. Systolic Array Tuning (egomez) 
○ Profile how many bodies per pass we can handle versus resource utilization. 
○ Adjust the number of PEs (K) to strike a balance between concurrency and timing 

closure at 50 MHz. 
○ Possibly pipeline the array further if we can’t meet timing at a higher 

concurrency. 
 

3. Integration Tests & Partial Benchmarks (mwguo + egomez) 
○ Run partial benchmarks on the FPGA using small to moderate N values. 
○ Compare against the naive design’s performance. 
○ Verify that resource usage remains within our device limits. 

April 24 – 28 

1. Advanced Optimizations (mwguo + egomez) 
○ Explore deeper pipelining strategies, data compression, or approximate arithmetic 

(like reduced mantissa) if needed. 
○ Investigate whether unrolling outer loops or reorganizing memory layouts can 

reduce stall cycles. 
 

2. Data Collection & Graph Generation (mwguo, egomez) 
○ Gather detailed throughput and cycle counts for various N. 
○ Compare the improved systolic array design against the CPU baseline and naive 

FPGA design. 
○ Plot performance vs. resource utilization, exploring multiple PE configurations. 

 
3. Final Report Preparation (mwguo + egomez) 

○ Summarize the pipeline design trade-offs, accuracy vs. performance findings, and 
resource usage. 

○ Compile results into clear charts showing speedup (or slowdown) relative to the 
CPU, power/watt analysis, etc. 

 
 

 



Poster Session 
For the poster session, we plan to show performance graphs comparing the CPU and naive + 
fully optimized FPGA implementations (including any implementations between naive and fully 
optimized). We would also like to do a performance/watt analysis because our FPGA 
implementation will likely be slower, but much more power efficient. There will not be a demo 
because there is not much to demo, besides the verification on our FPGA.  
 
Results 
For our naive N-Body simulations, we have been using a CPU C++ implementation to validate 
our results produced by our Altera DE2-115 Cyclone IV FPGA. Our CPU of choice was the Intel 
i7-12700–found in the ECE machines–which has a 4.9 GHz max clock frequency and 12 cores (8 
performance cores and 4 efficiency cores). Our FPGA has a 50 MHz clock frequency, ~140,000 
LUTs (Look Up Tables), and 432 M9Ks (which is BRAM memory–a type of SRAM–which we 
used to read our bodies’ data and write our updated body data). 
 
Our current CPU implementation is a single-threaded implementation, which we plan on 
optimizing to a Barnes Hut multithreaded OpenMP implementation, for future comparison 
against our systolic arrays and grid-based-approximation FPGA optimization. Since both 

implementations run in  time, we have limited our input body size to small . This has 𝑂(𝑁2) 𝑁
also allowed us to perform a significant amount of manual testing to gain confidence in the 
correctness of both our C++ and SystemVerilog program outputs and our validation Python 
scripts. 
 
Our scripts generate the data necessary for our bodies (i.e. 32-bit single-precision floating-point 
2D position, 2D velocity, and mass), and write it into 160-bit words in a MIF (Memory 
Initialization File). During synthesis, this data is written into our FPGA’s BRAM, and our 
bodies’ data is updated in-place. We then use our FPGA’s seven-segment segment displays to 
display the number of computation clock cycles, the data for the first few bodies in memory, or 
the sum of all the accelerations at the final time step on all bodies due to gravitational forces. The 
latter, while not the most rigorous method of testing, should be equal to the same sum computed 
during simulation or with the C++ implementation. However, we performed very rigorous testing 
for  during simulation, ensuring that the  positions/velocities/accelerations and 𝑁 ∈ 2,  20[ ] (𝑥,  𝑦)
masses matched exactly between the C++ and SystemVerilog implementations. 
 
Ensuring that we had these validation methods was critical to proceed with our optimized 
hardware designs. Additionally, we have recorded some results to have a benchmark for our 
more parallel design iterations. 
 
 
 

 



Figure 1: Wall-clock Computation Time for N-Body Simulation on FPGA vs CPU for 
 𝑁 ∈ {25,  50,  100,  200}

 

 N = 25 N = 50 N = 100 N = 200 

Intel i7-12700 
CPU (4.9 GHz 
Max Clock) 

0.000081 sec 0.000214 sec 0.000401 sec 0.000946 sec 

DE2-115 
Cyclone IV 
FPGA (50 MHz) 

1.377545 sec 5.530045 sec 22.160045 sec 88.720045 sec 

 
As shown above, our FPGA design is thousands of times slower than the CPU version. This is 
expected. Firstly, our FPGA’s maximum clock rate (50 MHz) is roughly 100 times slower than 
the CPU’s (4.9 GHz). Additionally, our hardware’s datapath is currently an “acceleration 
calculator,” rather than a fully optimized parallel datapath with systolic arrays. Our hardware 
also executes arithmetic instructions exactly as specified in the SystemVerilog description, 
whereas the Intel CPU supports out-of-order execution to overlap computations and hide 
memory latencies. Finally, the CPU has a lot more advanced arithmetic units. This is especially 
important to note because we are performing lots of floating point multiplication/division/square 
root operations. Since we did not have access to a floating-point square root IP core for our 
FPGA, we had to create our own square root approximation module using the Newton-Raphson 
approximation method. This approximation first makes an initial guess based on the input value, 
and then performs 2-3 iterations to find a value closest to the true square root. While we found 
that this approximation was highly accurate, it takes ~150 clock cycles due to the shifting and 
floating point additions/multiplications/divisions involved, whereas a modern CPU like the i7 we 
used would take around 20 clock cycles. This also applies to the rest of the floating-point 
arithmetic instructions. While a floating-point addition could take between 1-3 clock cycles on a 
CPU, it takes around 4 cycles on our FPGA using the FP IP cores provided by our Quartus 
synthesization software. 
 
While the CPU significantly outperforms our design, we are left with lots of interesting design 
choices. Firstly, our synthesized design only uses less than 1% of the LUTs on our FPGA. This 
means that we still have a lot of remaining resources to design a highly parallel datapath, and we 
could synthesize several more floating point units to hide our force calculations’ arithmetic 
latency. Additionally, since our design sacrifices little precision, we could consider how to 
redesign our square-root approximation module. Reducing our number of iterations for square 
root convergence could save us a significant amount of computation clock cycles (finding a 
middle-ground is important, since we don’t want to entirely sacrifice correctness of course). The 
differences in our design’s output vs. the CPU’s output could amortize over larger timesteps. 

 



Finally, now that we know which components in our design are the bottlenecks, we know what 
computation to overlap early on in our systolic arrays approach. 
 
Memory accesses are currently not a concern for us. While we could scale our body-input size to 
very large  and observe how our optimized design’s computation time scales, this would likely 𝑁
involve using SDRAM memory. However, this would largely complicate certain design choices 
and would leave us less time to optimize the systolic arrays approach. Therefore, we will stick to 
using M9K BRAM, and set a target input size of 10,000-20,000 bodies for our final design to 
compare against the CPU. 
 
Concerns 

A key concern lies in the latency of floating-point arithmetic on the FPGA, particularly the 
square-root approximation module, which currently requires around 150 clock cycles per 
operation. Other floating-point operations (multiplication, division, and addition) also take 
significantly longer on the FPGA than on a modern CPU. To address this, we plan to pipeline 
these operations more aggressively and experiment with fewer iterations in the Newton-Raphson 
method for square root. Our goal is to reduce cycle counts while maintaining acceptable 
numerical accuracy. 

We are also attentive to the trade-off between resource utilization and parallelism. While our 
naive design currently uses less than one percent of the LUTs, a fully expanded systolic array 
could place heavier demands on FPGA resources. We intend to add processing elements (PEs) 
incrementally, carefully monitoring resource usage, and only insert additional pipelining where it 
meaningfully improves performance. 

Memory bandwidth and scalability are another concern—particularly for larger N 
values—because multiple PEs accessing memory in parallel can saturate on-chip resources. We 
plan to stay within the bounds of the on-chip BRAM for a target of roughly 10,000 to 20,000 
bodies. Should bandwidth constraints surface, we will adjust the level of concurrency or 
investigate simple burst-based SDRAM approaches without overcomplicating our design. 

Additionally, while our C++ and Python scripts have already proven effective for validation, we 
recognize the need for more robust corner-case testing as we move to more advanced designs. 
We will maintain thorough simulation testbenches and compare outputs (positions, velocities, 
and partial sums of forces) to our CPU implementation over multiple time steps to ensure 
correctness before performing final synthesis. 

Lastly, we are aware of the tight timeline. Implementing and optimizing the systolic array, 
followed by extensive data collection and reporting, must be completed in only a few weeks. Our 
approach is to focus on a minimal but functional systolic design first, then apply further 

 



optimization, deeper pipelining, and approximate arithmetic techniques if time permits. This 
strategy will help us manage complexity while still delivering meaningful performance and 
energy-efficiency results. 
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